E-Mail: [email protected]
- Solo il 16% dei professionisti nel settore dell'IA sono donne, evidenziando una significativa disparità di genere che contribuisce ai bias algoritmici.
- Se le donne fossero equamente rappresentate nell'economia globale, il PIL mondiale potrebbe aumentare di 28 trilioni di dollari, sottolineando l'enorme potenziale economico inespresso a causa delle disuguaglianze.
- Il progetto Empowering Multilingual Inclusive Communication (E-Mimic) mira a correggere le discriminazioni nei testi amministrativi e universitari italiani, fornendo un supporto nella composizione di testi inclusivi attraverso algoritmi di deep learning, con il software Inclusively.
Bias di genere nell’ia: un problema sistemico
L’avvento dell’intelligenza artificiale (IA) ha promesso una rivoluzione in svariati settori, dall’automazione dei processi decisionali all’ottimizzazione delle operazioni aziendali. Tuttavia, dietro questa promessa di efficienza e progresso tecnologico, si cela una realtà più complessa e inquietante: la presenza di bias di genere all’interno degli algoritmi di IA. Questo fenomeno non solo mina la credibilità e l’affidabilità di tali sistemi, ma perpetua anche le disuguaglianze di genere esistenti nella società.
Il problema dei bias di genere nell’IA è intrinsecamente legato ai dati su cui questi algoritmi vengono addestrati. Se i dati riflettono stereotipi di genere o disparità storiche, l’IA imparerà e amplificherà questi pregiudizi. Ad esempio, se un algoritmo di assunzione viene addestrato su dati che mostrano una predominanza maschile in posizioni di leadership, potrebbe erroneamente concludere che gli uomini sono più adatti per tali ruoli, escludendo ingiustamente le candidate donne. Questo tipo di discriminazione algoritmica può avere conseguenze significative sulla carriera e sulle opportunità professionali delle donne.
Un esempio concreto di questa problematica è emerso con gli algoritmi di raccomandazione utilizzati da piattaforme di streaming video. Questi sistemi, addestrati su dati che riflettono stereotipi di genere, possono suggerire contenuti diversi a uomini e donne, limitando l’esposizione delle donne a una varietà di prospettive e opportunità creative. Analogamente, gli algoritmi utilizzati nella ricerca di lavoro online possono discriminare le donne mostrando annunci di lavoro di alto livello più frequentemente agli uomini.
Secondo i dati del European Institute for Gender Equality (EIGE), solo il 16% dei professionisti nel settore dell’IA sono donne. Questa disparità di genere contribuisce ulteriormente al problema, poiché una mancanza di diversità tra gli sviluppatori può portare a una minore consapevolezza dei bias e a una minore capacità di mitigarli. Se le donne fossero equamente rappresentate nell’economia globale, il PIL mondiale potrebbe aumentare di 28 trilioni di dollari, evidenziando l’enorme potenziale economico che si perde a causa di queste disuguaglianze.
Valerio Basile, ricercatore del Dipartimento di Informatica dell’Università di Torino, sottolinea che i Large Language Models (LLMs) riflettono il sapere condiviso della società, acquisendo pregiudizi dai dati di addestramento. Questo significa che gli algoritmi imparano a perpetuare gli stereotipi di genere presenti nei dati, creando un ciclo di discriminazione difficile da interrompere. I bias possono manifestarsi in due forme principali: bias rappresentazionali*, che attribuiscono caratteristiche stereotipiche a gruppi specifici, e *bias allocativi, che sottorappresentano determinati gruppi sociali nei dataset.
[IMMAGINE=”Create an iconographic image inspired by naturalist and impressionist art, showcasing the main entities discussed in the article about gender bias in AI. The image should be simple, unified, and easily understandable, using a warm and desaturated color palette. It should not contain any text.
The central element is a stylized algorithmic web representing AI, with interconnected nodes symbolizing the complex decision-making processes. Overlaid on this web is a gender symbol that is intentionally obscured or distorted by the algorithmic web, signifying how gender bias can become embedded within AI systems.
Around the central image, include subtle representations of stereotypical elements such as a stylized gavel representing legal decisions skewed by AI bias, a movie reel suggesting biased media recommendations, and a credit card with different limits to illustrate financial bias. Each element should be designed in a simple, iconic style reminiscent of botanical illustrations or old scientific diagrams.
In the background, use a desaturated color palette with warm tones like muted yellows, oranges, and browns to create a sense of historical documentation, as if the image is capturing a phenomenon from a bygone era being re-evaluated. Ensure that the overall image conveys a sense of imbalance and embedded bias without being overtly didactic. The style should evoke the simplicity of naturalist drawings combined with the evocative palette of Impressionism.”]
Assunzioni e accesso al credito: aree critiche
Le conseguenze concrete dei bias di genere nell’IA si manifestano in diversi ambiti, tra cui le assunzioni e l’accesso al credito. Nel processo di assunzione, un algoritmo addestrato su dati storici che riflettono una predominanza maschile in posizioni di leadership potrebbe erroneamente concludere che gli uomini sono più adatti per tali ruoli, escludendo ingiustamente le candidate donne. Se un algoritmo analizza dati storici in cui gli uomini sono stati promossi più frequentemente delle donne, potrebbe erroneamente concludere che il genere maschile è un indicatore di idoneità per la promozione.
Un altro esempio significativo riguarda gli algoritmi utilizzati per valutare le richieste di prestito. Questi sistemi possono perpetuare la discriminazione valutando le imprenditrici come più rischiose a causa della dipendenza da dati storici che riflettono un accesso limitato al credito e pregiudizi di genere. Il caso della Apple Card, dove alcune donne hanno ricevuto limiti di credito inferiori rispetto agli uomini con profili simili, è un esempio concreto di come il bias algoritmico possa influenzare l’accesso ai prodotti finanziari.
Questi esempi evidenziano come gli algoritmi, pur essendo progettati per essere neutrali e oggettivi, possano in realtà amplificare le disuguaglianze esistenti, creando barriere per le donne in diversi settori. La mancanza di trasparenza nei processi decisionali automatizzati rende difficile identificare e correggere questi bias, perpetuando un ciclo di discriminazione algoritmica.
La discriminazione di genere causata dagli algoritmi può manifestarsi in modi sottili, ma significativi, influenzando non solo le carriere ma anche, ad esempio, come i prodotti, i servizi e le offerte vengono sviluppati e a chi si rivolgono. L’uso non critico di tecnologie algoritmiche rischia di amplificare stereotipi dannosi. Ad esempio, gli algoritmi di raccomandazione possono intrappolare gli utenti in bolle informative che rafforzano pregiudizi e visioni del mondo limitate, piuttosto che esporli a una varietà di prospettive. Gli algoritmi di raccomandazione usati dai servizi di streaming video possono perpetuare stereotipi di genere suggerendo contenuti basati su dati storici che riflettono pregiudizi, come l’associazione di certi generi cinematografici a specifici generi sessuali. Questa discriminazione limita l’esposizione delle donne a una varietà di contenuti e potrebbe escluderle da quelli di loro interesse, influenzando negativamente sia le loro esperienze come consumatrici sia le opportunità come creatrici nel campo tecnologico.
Mitigare i bias: strategie e iniziative
Affrontare il problema dei bias di genere nell’IA richiede un approccio multisfaccettato che coinvolga sviluppatori, aziende, istituzioni e la società nel suo complesso. È fondamentale rivedere criticamente i set di dati utilizzati per l’addestramento degli algoritmi, assicurandosi che siano rappresentativi e privi di pregiudizi. Questo significa raccogliere dati da fonti diverse e rappresentative, e utilizzare tecniche di campionamento per garantire che tutti i gruppi siano adeguatamente rappresentati.
Inoltre, è necessario implementare tecniche di apprendimento automatico che identifichino e correggono attivamente i bias. Queste tecniche possono includere l’utilizzo di algoritmi di regolarizzazione per penalizzare i modelli che mostrano bias, e l’addestramento di modelli su dati controfattuali per valutare e mitigare i pregiudizi. È altrettanto importante garantire un controllo umano costante delle decisioni prese dagli algoritmi, soprattutto in contesti ad alto impatto. Questo può includere la revisione manuale delle decisioni prese dagli algoritmi, e l’implementazione di meccanismi di feedback per consentire agli utenti di segnalare eventuali bias.
La trasparenza è un altro aspetto cruciale. Le aziende devono essere più aperte riguardo ai dati e ai sistemi automatizzati che utilizzano, per permettere di identificare e correggere eventuali discriminazioni. L’AI Act, recentemente approvato dal Parlamento Europeo, rappresenta un passo avanti significativo in questa direzione, introducendo misure di trasparenza e responsabilità per i fornitori di IA. La normativa impone ai fornitori di IA di adottare misure di trasparenza, consentendo agli utenti di comprendere il funzionamento degli algoritmi e i dati sottostanti. In particolare, i sistemi ad alto rischio devono affrontare valutazioni di conformità prima di essere introdotti sul mercato, assicurando l’aderenza ai principi di sicurezza, non discriminazione e rispetto dei diritti fondamentali.
Un esempio concreto di iniziativa volta a mitigare i bias è il progetto Empowering Multilingual Inclusive Communication (E-Mimic), finanziato dal Ministero dell’Università e della Ricerca. Questo progetto mira a correggere le discriminazioni e i pregiudizi contenuti nel linguaggio dei testi amministrativi e universitari in italiano, fornendo un supporto nella composizione di testi inclusivi e rispettosi delle diversità attraverso algoritmi di deep learning. Il progetto ha sviluppato Inclusively, un sistema software che assiste nella scrittura di testi inclusivi. Il software è pensato per diverse tipologie di utenti. Grazie alla sua interfaccia multipla, il software potrà essere utilizzato, come un vero e proprio assistente virtuale, da chiunque abbia bisogno di supporto nella scrittura di testi, per correggerli e migliorarli dal punto di vista dell’inclusività. L’altro uso di Inclusively sarà per gli e le addette ai lavori, sia in ambito linguistico che di data science.
Promuovere l’equità: un impegno collettivo
Promuovere l’equità di genere nell’IA richiede un impegno collettivo da parte di tutti gli attori coinvolti. È essenziale promuovere l’educazione e la sensibilizzazione sulle questioni di genere nell’ambito dell’IA, incoraggiando più donne a intraprendere carriere STEM e coinvolgendo tutti gli attori nella creazione di un’IA più equa e inclusiva. Abbattere gli stereotipi di genere inizia a casa, supportando le bambine a sviluppare interesse per le materie scientifiche.
Le scuole hanno l’opportunità di contribuire a un’inversione di rotta in tal senso, organizzando, a seconda delle età, atelier immersivi nelle professioni dell’intelligenza artificiale, che illustrino da un lato le sfide poste da tali strumenti e i vantaggi di un’IA inclusiva e dall’altro che cosa concretamente significa diventare professionisti dell’IA. Superare il gender gap sul lavoro è un compito che spetta allo stato e alle aziende. Le aziende, da parte loro, indipendentemente dal settore in cui operano, si troveranno sempre più a contatto con l’intelligenza artificiale: se non la svilupperanno esse stesse, potranno fare affidamento a terzi per l’elaborazione degli algoritmi più diversi.
Costituire team di sviluppo diversificati, che riflettano la varietà della popolazione generale, è una strategia fondamentale. Team eterogenei riducono il rischio di pregiudizi inconsci e favoriscono l’equità nelle tecnologie sviluppate. È importante che le aziende e le istituzioni investano nella formazione di professionisti dell’IA provenienti da background diversi, offrendo opportunità di mentoring e supporto per garantire che tutti abbiano la possibilità di contribuire allo sviluppo di un’IA più equa e inclusiva.
Le associazioni e le organizzazioni non governative possono svolgere un ruolo importante nella promozione dell’equità di genere nell’IA, sensibilizzando l’opinione pubblica e offrendo risorse e supporto per le donne che lavorano nel settore. Queste organizzazioni possono anche svolgere un ruolo di advocacy, sollecitando le aziende e le istituzioni a implementare politiche e pratiche che promuovano l’equità di genere. Solo creando un movimento condiviso riusciremo a rendere l’IA inclusiva una realtà per tutti, a livello europeo e oltre.
In definitiva, l’obiettivo è quello di creare un’IA che sia veramente al servizio di tutti, senza discriminazioni o pregiudizi. Questo richiede un impegno costante e una volontà di affrontare le sfide che si presentano, ma il risultato sarà un’IA più potente, affidabile e inclusiva, che contribuirà a creare un futuro più equo per tutti.
Verso un futuro senza algoritmi invisibili
Nel percorso verso un’intelligenza artificiale più etica e inclusiva, è fondamentale comprendere alcuni concetti chiave. Uno di questi è il machine learning, il processo attraverso cui un algoritmo impara dai dati senza essere esplicitamente programmato. Se i dati di addestramento riflettono pregiudizi sociali, l’algoritmo li assorbirà e li riprodurrà. Per questo, è cruciale adottare tecniche di fairness-aware machine learning, che mirano a mitigare i bias nei modelli predittivi.
Un concetto avanzato, applicabile a questo tema, è l’utilizzo di reti generative avversarie (GAN) per creare dati sintetici privi di pregiudizi. Le GAN sono composte da due reti neurali: una generativa, che produce nuovi dati, e una discriminativa, che valuta se i dati generati sono reali o sintetici. Addestrando una GAN su dati privi di pregiudizi, è possibile generare dataset che possono essere utilizzati per addestrare algoritmi di IA più equi.
Riflettendo su quanto abbiamo esplorato, ci troviamo di fronte a una sfida cruciale: come garantire che l’IA, una tecnologia con un potenziale trasformativo immenso, non diventi uno strumento per perpetuare le disuguaglianze esistenti? La risposta risiede in un impegno collettivo, che coinvolga sviluppatori, aziende, istituzioni e la società civile, per promuovere un’IA etica, trasparente e inclusiva. Solo così potremo costruire un futuro in cui l’IA sia veramente al servizio di tutti, senza lasciare indietro nessuno.








