E-Mail: redazione@bullet-network.com
- Studio ProPublica: afroamericani hanno probabilità doppia di essere classificati ad alto rischio.
- Algoritmi imparano ed emulano i pregiudizi presenti nei dati.
- L'algoritmo COMPAS discrimina sistematicamente le minoranze.
L’ombra dei bias nell’era dell’Intelligenza Artificiale
La promessa racchiusa nell’intelligenza artificiale (IA) è quella di una rivoluzione, in grado di trasformare profondamente la nostra società moderna. Il suo influsso si avverte in molti ambiti: dalla sanità alla sfera finanziaria; dal trasporto all’ambito della sicurezza pubblica; tutto sembra indicare che le possibilità offerte dall’IA siano davvero infinite. Ciononostante, è importante non lasciarsi abbagliare dalle sole prospettive positive: ad emergere da tale realtà scintillante vi sono preoccupazioni legate ai potenziali rischi associati all’uso degli algoritmi – strumenti questi creati dall’uomo stesso – che potrebbero finire per replicare ed intensificare pregiudizi già presenti nella nostra società o disuguaglianze radicate nel tessuto sociale. Una manifestazione critica di tali problematiche emerge nella sfera del diritto penale, dove strumenti come gli algoritmi predittivi usati per determinare la probabilità di recidiva possono esercitare impatti devastanti sulle vite degli individui coinvolti; questo vale soprattutto per coloro provenienti da gruppi etnici o sociali considerati minoritari. Il caso emblematico che rappresenta tale questione è l’algoritmo COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), ampiamente utilizzato negli Stati Uniti per analizzare i rischi legati a fenomenologie criminose future. L’introduzione dell’algoritmo nel contesto giuridico statunitense ha generato una intensa discussione sui temi legati all’etica, all’equità e alla trasparenza. Questo dibattito rimarca in modo preminente l’esigenza impellente di trattare la problematica relativa ai bias insiti nell’intelligenza artificiale.
Il modello COMPAS elaborato da Equivant (ex Northpointe) poggia le sue fondamenta su un questionario composto da più di cento domande diverse. Tali quesiti coprono ambiti variabili come la storia criminosa dell’individuo in esame fino alle sue relazioni interpersonali; non tralasciamo anche il grado d’istruzione ricevuto e le condizioni socio-economiche prevalenti. Le risposte sono soggette a elaborazione mediante un algoritmo esclusivo capace di produrre uno score indicativo del rischio associato al soggetto stesso, quantificabile tramite una scala da 1 a 10. I magistrati attingono a questo punteggio nella formulazione delle loro decisioni critiche riguardanti la libertà condizionale o altre misure punitive rispetto all’individuo interessato; ciò include anche percorsi rieducativi volti alla reintegrazione sociale. Secondo gli ideatori del sistema COMPAS, analizzare meticolosamente i dati disponibili consente previsioni più accuratamente mirate sul comportamento futuro dei delinquenti potenziali; tutto ciò servirebbe infine a contenere efficacemente il tasso di recidiva tra gli stessi individui esaminati. Nonostante le aspettative iniziali, la presunzione sottesa si è rivelata infondata; pertanto, l’adozione di COMPAS ha generato esiti discutibili e spesso privi di equità.

Uno studio condotto nel 2016 da ProPublica, un’organizzazione giornalistica indipendente, ha rivelato che COMPAS discrimina sistematicamente le minoranze, in particolare gli afroamericani. L’esame condotto su oltre 7.000 arrestati nella contea floridiana di Broward ha rivelato un fenomeno preoccupante: gli afroamericani risultano avere una probabilità significativamente superiore rispetto ai bianchi nel ricevere la classificazione errata come soggetti ad alto rischio di recidiva. In modo particolare, tale categoria sembra colpire gli afroamericani con un’incidenza doppia: infatti venivano spesso considerati ad alto rischio mentre in realtà erano improbabili futuri criminali. Contrariamente a questa tendenza rischiosa, i bianchi emergevano dall’analisi con maggior probabilità di essere identificati erroneamente come a basso rischio malgrado evidenze comportamentali suggerissero il contrario, ovvero nuove possibili infrazioni penalmente rilevanti. I risultati ottenuti hanno messo seriamente in discussione la legittimità e l’equità dell’algoritmo COMPAS, portando a riflessioni sull’idoneità degli algoritmi predittivi applicabili al diritto penale contemporaneo. A queste problematiche empiriche se ne sommano altre riguardo alla natura intrinsecamente poco trasparente dell’algoritmo stesso: molti esperti concordano sul fatto che l’opacità del sistema rende ardua l’interpretazione delle modalità attraverso cui vengono formulati i punteggi associabili al livello di rischio e su quali criteri questi vengano prioritariamente considerati. La carenza di chiarezza alimenta serie inquietudini riguardanti sia la responsabilità, sia l’opportunità di mettere in discussione le sentenze fondate su COMPAS. È emerso inoltre come i dati utilizzati per il training dell’algoritmo siano intrisi dei pregiudizi e delle disparità correnti nel contesto giuridico; pertanto, anziché contrastare pratiche discriminatorie, COMPAS tende ad intensificarle e replicarle.
Le origini dei bias algoritmici: un riflesso delle disuguaglianze sociali
I bias algoritmici rappresentano una problematica estesa oltre il sistema COMPAS: essi toccano diversi ambiti dove vengono applicati vari tipi di algoritmi nel campo dell’intelligenza artificiale. Le radici dei suddetti bias possono essere molteplici; spesso emergono da dati distorti o mal rappresentativi utilizzati durante l’addestramento degli algoritmi stessi. Tali strumenti apprendono dai set informativi a loro forniti e, qualora questi contenessero pregiudizi o disuguaglianze già presenti all’interno della nostra società, gli algoritmi li apprenderanno ed emuleranno. Un caso emblematico potrebbe essere quello in cui un algoritmo per il riconoscimento facciale, con prevalenza d’uso su fotografie riguardanti persone caucasiche, risulta incapace nell’identificazione efficiente dei visi appartenenti ad altre etnie diverse. Di riflesso, accade anche con gli alert intelligenti per la traduzione automatica: qualora venga formata una rete su testi impregnati da stereotipi legati al genere umano, delle frasi incluse nei materiali linguistici si osserva una carente accuratezza nella loro rielaborazione rispetto a formulazioni divergenti dagli stereotipi stessi.
Un’altra fonte potenziale del manifestarsi dei bias negli algoritmi può derivare dalle scelte compiute durante la progettazione stessa degli strumenti tecnologici. Gli sviluppatori – talvolta in maniera non intenzionale – possono generare ulteriori forme di bias tramite decisioni relative alle variabili includibili nel modello analitico rispettivo, al peso attribuito ad ognuna delle stesse e ai criteri decisionali scelti nello sviluppo degli stessi programmi. Quando si osserva un algoritmo destinato alla valutazione del credito, diventa evidente come esso possa favorire categorie specifiche basate su un determinato grado d’istruzione o su professioni ben definite. Questo porta a discriminazioni nei confronti degli individui che non rientrano in tali parametri stabiliti dal sistema stesso, una situazione particolarmente problematica soprattutto quando questi ultimi possiedono effettive capacità economiche per restituire quanto richiesto attraverso il prestito. La questione si complica ulteriormente alla luce della scarsa diversità presente nel gruppo degli sviluppatori d’intelligenza artificiale; infatti, dominato da uomini bianchi, spesso lo limita nella percezione dei vari bias insiti all’interno degli algoritmi creati. Di conseguenza, appare urgente ed essenziale promuovere inclusività e varietà all’interno dell’industria dell’IA: solo così sarà possibile garantire la realizzazione di algoritmi capaci di riflettere le esigenze diverse delle molteplici comunità.
In questo contesto emerge chiaramente un punto critico: gli algoritmi devono essere visti come prodotti umani influenzati dalla soggettività dei loro creatori invece che come dispositivi puramente imparziali ed oggettivi; quindi è inevitabile considerarli portatori dei limiti cognitivi più ampi legati alla mente umana stessa.
Trascurare questa verità implica accettarne le conseguenze: un’intelligenza artificiale capace non solo di alimentare disuguaglianze, ma anche discriminazioni esplicite, erodendo i pilastri stessi della giustizia. Un chiaro esempio si trova nell’adozione degli algoritmi predittivi all’interno del sistema giudiziario, come evidenziato dal caso emblematico del software COMPAS. Tale situazione illustra chiaramente quanto possano essere insidiose le distorsioni insite nei sistemi informatici sul destino degli individui. È dunque imperativo avvicinarsi a tali questioni con rigoroso impegno; ciò implica il bisogno urgente d’identificare vie innovative per ridurre queste distorsioni sistemiche garantendo un uso etico delle tecnologie emergenti. Investimenti nella ricerca volta allo sviluppo metodologico nell’addestramento delle macchine rappresentano un primo passo necessario, così come aumentare gli sforzi verso maggiore trasparenza nei processi decisionali e accountability nelle applicazioni pratiche dell’intelligenza artificiale; aumentando così la consapevolezza collettiva riguardo ai rischi associati insieme alle possibilità offerte da questi strumenti avanzati. Solo adottando tale approccio saremo in grado non soltanto d’incanalare efficacemente il contributo dell’IA al progresso sociale ma anche proteggere i principi cardinali d’equità.
Strategie per un’ia più equa: mitigare i bias e promuovere la trasparenza
La mitigazione dei bias algoritmici è una sfida complessa che richiede un approccio multidimensionale e un impegno costante da parte di tutti gli attori coinvolti. Non esiste una soluzione unica e definitiva, ma piuttosto una serie di strategie e tecniche che possono essere utilizzate in combinazione per ridurre i bias e garantire che l’IA sia utilizzata in modo più equo e responsabile. Una delle strategie più importanti è quella di migliorare la qualità e la rappresentatività dei dati di addestramento. Questo significa raccogliere dati da fonti diverse e assicurarsi che rappresentino accuratamente la diversità della popolazione. Inoltre, è fondamentale identificare e rimuovere i dati che contengono pregiudizi espliciti o impliciti. Ad esempio, se i dati sulla criminalità riflettono pratiche discriminatorie da parte delle forze dell’ordine, è necessario correggerli o escluderli dall’addestramento dell’algoritmo.
Un’altra strategia importante è quella di utilizzare algoritmi “fairness-aware”, ovvero algoritmi progettati specificamente per ridurre i bias durante il processo di addestramento. Questi algoritmi possono includere tecniche di regolarizzazione, che penalizzano le decisioni ingiuste, modelli equilibrati, che bilanciano l’accuratezza con l’equità, e tecniche di “adversarial debiasing”, che addestrano l’algoritmo a distinguere e rimuovere i pregiudizi nei dati. Inoltre, è possibile applicare tecniche di post-processing, che correggono le decisioni generate dall’algoritmo per compensare eventuali bias residui. Ad esempio, è possibile regolare le soglie di decisione per garantire che i tassi di errore siano equi tra diversi gruppi, o applicare pesi diversi ai risultati per compensare i bias rilevati. Oltre alle strategie tecniche, è fondamentale promuovere la trasparenza e la responsabilità nell’IA. Questo significa richiedere che gli algoritmi utilizzati in contesti sensibili siano trasparenti e che i loro creatori siano responsabili delle conseguenze delle loro decisioni. La trasparenza può essere raggiunta attraverso la documentazione accurata dei dati utilizzati, delle scelte di progettazione e dei metodi di mitigazione del bias. Per garantire una solida responsabilità nella gestione delle tecnologie digitali avanzate, è imperativo istituire dei comitati etici interni, procedere con audit esterni regolari, nonché predisporre specifici meccanismi di ricorso. Questi strumenti sono essenziali per tutelare coloro che possono subire danni a causa delle decisioni governate dagli algoritmi. È altresì imprescindibile avviare campagne volte alla formazione continua e alla sensibilizzazione riguardo ai rischi associati all’intelligenza artificiale (IA), così come alle sue innumerevoli opportunità. Un elevato grado d’informazione deve caratterizzare gli sviluppatori, i legislatori e il grande pubblico su argomenti quali i bias insiti nei sistemi algoritmici oltre all’urgenza di adottare pratiche responsabili nell’ambito dell’IA. Ciò sarà realizzabile tramite percorsi formativi appositamente strutturati, workshop interattivi e iniziative educative destinate a un ampio pubblico.
Verso un futuro algoritmico equo e inclusivo: un imperativo etico
La problematica inerente ai bias algoritmici va ben oltre la mera dimensione tecnica; si tratta piuttosto di un dovere etico sociale. Per poter far fronte a questa complessità risulta essenziale il contributo sinergico degli attori coinvolti: ricercatori ed esperti informatici devono lavorare fianco a fianco con i policymakers così come con i cittadini. Soltanto mediante uno schema cooperativo disposto ad abbracciare più discipline sarà possibile garantire che l’intelligenza artificiale serva per costruire una società più giusta ed inclusiva. Le conseguenze sono rilevanti: ignorare adeguatamente il problema dei bias comporterebbe il rischio concreto di assistere alla proliferazione delle disuguaglianze già presenti nel nostro contesto attuale; ne deriverebbe una realtà in cui scelte fondamentali per gli individui potrebbero essere affidate a processi decisionali condotti da algoritmi privi di chiarezza o naturalmente inclini alla discriminazione.
È pertanto imprescindibile porre al centro dell’attenzione collettiva la questione etica riguardante l’IA; tale orientamento dovrebbe plasmare sia la creazione sia la diffusione di tecnologie intelligenti caratterizzate da equità tra criteri operativi e trasparenza assoluta. Ciò implica dedicarsi allo studio continuo per sviluppare nuove modalità efficaci per ridurre i pregiudizi insiti nei dati utilizzati, incentivando al contempo iniziative volte ad aumentare la rappresentatività all’interno del settore dell’intelligenza artificiale mentre si instaura una maggiore consapevolezza nell’opinione pubblica sui potenziali vantaggi quanto sulle insidie collegate all’utilizzo delle tecnologie IA. È fondamentale procedere alla creazione di un quadro normativo solido, capace di fissare criteri chiari riguardo alla trasparenza algoritmica, norme per l’analisi dei pregiudizi e sistemi adeguati sia per controlli che sanzioni in caso di inosservanza. In tale ambito, l’Unione Europea ha intrapreso significativi progressi attraverso l’AI ACT, mirato a stabilire delle regole chiare volte alla salvaguardia dei diritti individuali mentre si favorisce anche l’innovazione responsabile. Il nostro approccio nella lotta contro i bias algoritmici sarà cruciale; esso determina come gli sviluppi nell’ambito dell’intelligenza artificiale possano realmente servire al bene collettivo, contribuendo così alla creazione di una società più giusta ed equa.
Questo testo invita a una profonda riflessione sul crescente impatto della tecnologia nel nostro quotidiano. L’intelligenza artificiale presenta vastissime opportunità; tuttavia, esse possono rivelarsi solo se saremo attenti ai suoi limiti nonché ai potenziali rischi associati al suo utilizzo. È cruciale riconoscere le differenze sostanziali tra dati concreti e ciò che rappresentano nella vita quotidiana; ugualmente rilevante risulta comprendere come gli algoritmi possano operare in modo totalmente distinto dagli individui reali. Non possiamo permettere alla fittizia neutralità tecnologica di ingannarci: spetta a noi dirigere l’evoluzione dell’intelligenza artificiale verso orizzonti dove principi quali equità, trasparenza e responsabilità prevalgono nettamente. È interessante sottolineare come uno degli aspetti cruciali nell’ambito dell’IA sia quello relativo al machine learning; questa pratica consente agli algoritmi di insegnarsi da soli attraverso l’analisi dei dati senza ricevere indicazioni dirette o codifiche predeterminate. Di conseguenza, eventuali pregiudizi già esistenti all’interno delle informazioni possono facilmente infiltrarsi nei modelli algoritmici stessi, causando analisi errate o parziali. Un ulteriore passo avanti consiste nel concetto evoluto del fairness-aware machine learning: si tratta dello sviluppo intenzionale di algoritmi capaci di considerare criteri equitativi durante tutto il percorso formativo per attenuare i preconcetti ed assicurare uscite decisamente più giuste ed equilibrate. Questi principi evidenziano chiaramente come l’intelligenza artificiale non debba essere vista come un’entità misteriosa priva di trasparenza ma piuttosto come un complesso meccanismo sociale necessitante una disamina approfondita delle sue funzioni interne oltre ai riflessi significativi sulle dinamiche sociali circostanti.