E-Mail: redazione@bullet-network.com
- 10,5 milioni di lavoratori italiani fortemente esposti all'impatto IA.
- Il 43,5% dei lavoratori esposti sono professionisti mediamente qualificati.
- 8,4 milioni di lavoratori altamente impattati dal Machine Learning.
L’avvento dell’intelligenza artificiale (IA) sta rivoluzionando il panorama lavorativo globale, e l’Italia non è un’eccezione. Un’analisi accurata dimostra che numerosi professionisti italiani si trovano di fronte a un punto cruciale: l’IA potrebbe soppiantare alcune delle loro funzioni, oppure integrarsi nel loro lavoro, imponendo un’evoluzione delle competenze. Questo scenario, tutt’altro che catastrofico, offre opportunità inedite per la crescita e l’innovazione, a condizione che venga affrontato con consapevolezza e preparazione.
L’impatto dell’IA sul mercato del lavoro italiano
Uno studio condotto da Randstad Research per Fondazione Randstad AI & Humanities ha quantificato l’impatto dell’IA sui lavoratori italiani, applicando tre diversi indici scientifici: l’indice di esposizione all’automazione, l’indice di esposizione all’IA e l’indice di esposizione al Machine Learning. I risultati delineano un quadro complesso, in cui l’IA non risparmia né le professioni qualificate né quelle meno qualificate.
L’indice di esposizione all’automazione evidenzia come impiegati, operai e conducenti di vetture siano i più esposti alla sostituzione o alla complementarità nelle attività. L’indice di esposizione all’IA rivela che impiegati, alti dirigenti e professioni intellettuali, scientifiche e ad alta specializzazione sono i più influenzati dall’IA. Infine, l’indice del Machine Learning conferma che gli impiegati sono i più esposti a questa tecnologia.

L’analisi dei dati Istat della Forza lavoro, che comprende 22,4 milioni di occupati (escluse le Forze Armate), ha permesso di stimare che 10,5 milioni di lavoratori sono fortemente esposti all’impatto delle nuove tecnologie. Tra questi, spiccano i professionisti mediamente qualificati, che rappresentano il 43,5% del totale. È interessante notare che, secondo l’indice di esposizione al Machine Learning, 8,4 milioni di lavoratori sono altamente impattati, con una ripartizione tra il 46,1% di professionisti con competenze medie e il 40,6% con competenze elevate.
- 🚀 L'IA come trampolino, non ostacolo... ...
- 🤖 Rischio disumanizzazione? Non se... 🤔...
- 🔄 Gavetta 2.0: l'IA come 'sensei'... 💡...
Identikit dei lavoratori più a rischio
L’indagine ha delineato un identikit dettagliato dei lavoratori più esposti ai diversi tipi di impatto dell’IA.
Esposizione all’automazione: Giovane impiegato, maschio, tra i 15 e i 24 anni, con basso titolo di studio (scuola dell’obbligo), che opera in settori ad alta manualità come costruzioni, turismo e logistica.
Esposizione all’IA: Donna, laureata, che lavora nel Nord e Centro Italia come analista dei dati o specialista nella finanza.
Esposizione al Machine Learning: Donna, del Nord e Centro Italia, tra i 15 e i 24 anni, con diploma di scuola superiore, impiegata nel commercio o finanza, che lavora in smart working.
Questi profili evidenziano come l’impatto dell’IA sia trasversale e non si limiti ai lavori manuali, ma coinvolga anche professioni altamente qualificate.
La “gavetta” nell’era dell’IA
L’automazione di compiti operativi di base solleva interrogativi sul futuro della “gavetta”, ovvero quel periodo di apprendistato in cui i giovani lavoratori acquisiscono competenze fondamentali attraverso mansioni ripetitive. Se l’IA è in grado di svolgere in pochi secondi ciò che un giovane impiegherebbe ore a completare, che senso ha oggi la gavetta?
Secondo Giuseppe Mayer, ceo di Talent Garden, stiamo vivendo una “rivoluzione radicale del concetto stesso di primo lavoro”. Le attività che un tempo permettevano ai giovani di imparare facendo – raccogliere dati, redigere report, organizzare informazioni – oggi sono delegate all’IA. Questo significa meno occasioni per sbagliare, meno tempo per imparare e il rischio di giovani professionisti che arrivano nei team senza aver mai fatto esperienza di base, ma chiamati a prendere decisioni complesse fin da subito.
Tuttavia, Mayer sottolinea che l’IA può essere un “alleato formidabile”, soprattutto nelle aree dove siamo meno competenti. L’IA è il miglior supporto possibile per chi deve affrontare un ambito nuovo. Ma quando si tratta di consolidare le nostre capacità, serve ancora esperienza, serve mettersi alla prova. Dobbiamo smettere di pensare alla formazione professionale come un percorso lineare, che parte da compiti semplici e sale di livello. Serve un nuovo modello.
Mayer propone un nuovo modello di “gavetta” basato sulla collaborazione attiva con l’IA. Ad esempio, mentre un manager utilizza l’IA per creare una presentazione, il compito del giovane potrebbe essere quello di rivedere i contenuti generati, correggere i prompt, migliorarli, aggiungere il suo contributo umano. Questa è la nuova gavetta.
Strategie per affrontare la trasformazione
Per affrontare la trasformazione del mercato del lavoro causata dall’IA, è necessario adottare strategie mirate.
L’indicatore di vulnerabilità all’IA mostra come impiegati, dirigenti di alto livello e figure professionali nel campo intellettuale, scientifico e altamente specializzato siano i più toccati dall’influenza dell’IA.
Nelle parole di Giuseppe Mayer, amministratore delegato di Talent Garden, “stiamo assistendo a un cambiamento epocale nella nozione stessa di impiego iniziale”.
Quelle mansioni che in passato permettevano ai neofiti di apprendere sul campo – raccogliendo dati, elaborando relazioni, strutturando informazioni – sono ora affidate all’IA.
Ciò implica una diminuzione delle opportunità di apprendimento dagli errori, una contrazione dei tempi di formazione e il pericolo che giovani professionisti si inseriscano nei team senza un’esperienza di base, trovandosi subito di fronte a decisioni complesse.
Ad ogni modo, Mayer rimarca come l’IA possa rappresentare un supporto eccezionale, specialmente in settori dove le nostre competenze sono carenti.
L’IA rappresenta la risorsa di supporto ideale per chi si trova ad operare in un ambito del tutto nuovo.
Tuttavia, quando l’obiettivo è fortificare le proprie abilità, l’esperienza pratica e la messa alla prova rimangono imprescindibili.
Occorre superare la concezione della formazione professionale come un iter strutturato, che inizia con compiti basilari per poi progredire gradualmente.
Per esempio, mentre un dirigente si avvale dell’IA per sviluppare una presentazione, il ruolo del giovane potrebbe incentrarsi sull’analisi dei risultati prodotti, sulla limatura delle istruzioni fornite, sul loro perfezionamento e sull’integrazione di un contributo personale.
Favorire la “padronanza dell’IA”: non è sufficiente saper utilizzare l’IA, è essenziale saperla gestire, comprendendone i limiti e le potenzialità.
Le attività che un tempo consentivano ai giovani di formarsi attraverso la pratica, come la raccolta di dati, la stesura di resoconti e l’organizzazione di informazioni, vengono ora affidate all’intelligenza artificiale.
Chi si approccia a un nuovo campo trova nell’IA il miglior sostegno possibile.
Tuttavia, per irrobustire le nostre abilità, l’esperienza sul campo e la sperimentazione restano insostituibili.
Bisogna abbandonare l’idea di un percorso di apprendimento professionale lineare, che inizia con compiti basilari e si sviluppa gradualmente verso livelli superiori.
Ipotizziamo che un manager impieghi l’IA per generare una presentazione: in questa situazione, l’incarico del giovane potrebbe consistere nel valutare il materiale prodotto, correggere i comandi, migliorarli e apportare un valore aggiunto umano.
Optare per le aziende giuste: quelle che investono nella formazione, creano ambienti di sperimentazione e offrono ai giovani un accompagnamento consapevole all’IA.
Un Futuro di Collaborazione Uomo-Macchina
In definitiva, l’IA non è una minaccia, ma un’opportunità per ridefinire il lavoro e valorizzare il talento umano. La chiave è imparare a collaborare con l’IA, sfruttando le sue potenzialità per liberare tempo e spazio per attività più strategiche, più umane, più creative.
L’intelligenza artificiale, nel contesto di cui abbiamo discusso, si basa su algoritmi di machine learning. Questi algoritmi permettono ai sistemi di apprendere dai dati senza essere esplicitamente programmati. Un concetto più avanzato è quello del transfer learning, dove un modello addestrato su un compito può essere riutilizzato per un compito simile, accelerando l’apprendimento e riducendo la necessità di grandi quantità di dati.
Riflettiamo: l’IA sta cambiando il modo in cui lavoriamo, ma non deve spaventarci. Piuttosto, dovremmo vederla come uno strumento per migliorare le nostre capacità e creare un futuro del lavoro più stimolante e gratificante. La sfida è quella di adattarsi, imparare e crescere, abbracciando le nuove opportunità che l’IA ci offre.